常见中草药提取物及主要成分对细胞色素P450 2C9抑制的研究进展
陈悦悦1 刘 勇2 李冬冬1 黄 豪1 曹耘铭1 丁 倩3 李 巍1▲
1.扬州大学医学院转化医学研究院,江苏扬州 225009;2.大连理工大学生命科学与药学学院,辽宁大连 124221;3.扬州大学附属江都人民医院药剂科,江苏扬州 225214
[摘要]近年来中草药常与西药联合使用,用于疾病的预防和治疗。中草药成分复杂,可能影响药物代谢酶活性,存在引发中草药-药物相互作用(HDI)的潜在风险。目前HDI 尚未受到足够重视。I 相药物代谢酶细胞色素P450 2C9(CYP2C9)与超过15%的药物代谢相关,尤其是其底物包括几种治疗窗较窄的临床常用药物。关注中草药对该酶活性的影响,对HDI 的评估至关重要。本文综述了包括银杏、人参、丹参、生姜和大蒜等在内的常见中草药的提取物及其主要活性成分对CYP2C9 的抑制作用,旨在为临床中草药与西药的合理使用提供理论依据。
[关键词]细胞色素P450 2C9;中草药;药物代谢;中药药物相互作用
细胞色素P450(CYPs)是催化药物I 相代谢最重要的药物代谢酶之一,60%的药物经由CYPs 代谢清除[1]。其中细胞色素P450 2C9(CYP2C9)催化了15%临床药物的代谢[2-4]。尤其值得关注的是其底物中包含了几种窄治疗窗且广泛使用的处方药,如华法林、苯妥英和甲苯磺丁脲等[5-6]。同服药物可能通过抑制CYP2C9 活性,导致上述药物的血药浓度升高,进而引发药物相互作用(DDI)的发生,影响药物的安全使用。中草药作为补充或替代疗法,在世界范围内正越来越广泛地被使用[7-8]。其天然来源属性常被错误解读为安全且无副作用,然而有关中草药所引起的不良反应报道却不容忽视。尤其是成分复杂的中药制剂常与化学药物共服,进而造成化学药物的药代动力学性质改变,导致HDI 的发生,这也是安全使用中药所面临的问题[9-11]。本文旨在综述中草药提取物及其主要成分对CYP2C9 酶活性抑制的体内和体外研究,评价基于CYP2C9 抑制的HDI 发生的可能性,现阐述如下。
1 宁夏枸杞对CYP2C9 的抑制作用
宁夏枸杞的果实枸杞子是我国最常见的中药材之一,被用于肝肾滋养和治疗视力下降等,其中的枸杞多糖、黄酮和色素等成分被认为是其主要活性成分[12]。有病例报告报道,某例患者服用的宁夏枸杞茶在体外对人肝微粒体中CYP2C9 催化的S-华法林代谢有抑制作用,其抑制常数(Ki)为3.4 mg/mL[13],且发现使用华法林治疗的患者在服用枸杞子茶时,国际标准化比值(INR)升高[13-15]。另有体外重组单酶体系的研究表明,枸杞鲜果和干果(均为2.5 mg/mL)的80%乙醇提取物对CYP2C9 活性有显著抑制作用,抑制率分别为87.9%和102.0%,但冷水和热水提取物的抑制率则在1.39%~22.4%[16]。这些研究结果显示,同服枸杞和经CYP2C9 代谢的药物可能会发生HDI,其中的脂溶性成分可能有更高风险[13-16]。
2 甘草提取物对CYP2C9 的抑制作用
甘草属植物中光果甘草、甜草和胀果甘草在各种传统医学体系中使用最多[17]。它们的提取物对CYP2C9催化的甲苯磺丁脲均有较强抑制作用[17-18]。甘草提取物对CYP2C9 抑制作用的常见文献报道结果见表1。体外实验表明,甘草的主要活性成分异甘草素、甘草西定、甘草查尔酮、甘草香豆素和甘草醇为CYP2C9的强抑制剂[17-19]。而甘草次酸则为CYP2C9 的中等强度抑制剂[20-21]。因此甘草制品与CYP2C9 底物共服时,需要注意引发HDI 的风险。
表1 甘草提取物对CYP2C9 的抑制作用
“-”表示未见报道
3 假马齿苋和穿心莲(AP)提取物对CYP2C9 的抑制作用
假马齿苋是斯玄参科匍匐草本植物,有增强记忆力的功效[22]。假马齿苋对CYP2C9 的抑制作用见表2。体外研究发现,假马齿苋提取物对CYP2C9 的抑制作用较弱[23]。值得注意的是口服300 mg/d 时,肠道内假马齿苋提取物浓度可达600 μg/mL,该浓度下CYP2C9的剩余催化活性低至4.9%,因此口服假马齿苋制剂可能影响部分经由CYP2C9 代谢的口服药物的生物利用度。但其常见活性成分苦艾素A、苦艾素A3、假马齿苋皂苷Ⅱ、假马齿苋皂苷X、假马齿苋皂苷C 和假马齿苋皂苷Ⅰ在约90 μg/mL 的浓度下对CYP2C9抑制作用均低于50%[24]。说明假马齿苋可能存在经由CYP2C9 引发HDI 的风险,但相关物质基础仍有待于进一步研究。
Tan 等[25]曾综述了AP 及其提取物通过CYPs 引发HDI。AP 提取物对CYP2C9 活性并无强烈抑制(表2),其主要活性成分穿心莲内酯在100 μmol/L 的浓度下对甲苯磺丁脲代谢的抑制作用低于50%[26],仅有其乙醇和甲醇提取物可能对CYP2C9 的底物甲苯磺丁脲的代谢有中等强度抑制作用[26-27]。因此AP 制品可能引发基于CYP2C9 抑制的HDI 风险。
表2 假马齿苋、AP 提取物对CYP2C9 的抑制作用
BOMMC:7-苄氧基甲氧基-3-氰基香豆碱;“-”表示未见报道
4 积雪草(CA)提取物对CYP2C9 的抑制作用
CA 为伞形科多年生草本,可以促进精神活动,也可用于治疗高血压、风湿病、发热和神经疾病等[28]。CA对CYP2C9 的抑制作用见表3。其单体主要活性成分中的积雪草苷、积雪草酸和羟基积雪草酸对CYP2C9的抑制作用较弱,IC50 均高于50 μmol/L[28-29]。其提取物中,仅乙醇和二氯甲烷可能对CYP2C9 的活性有较强至中等程度的抑制作用[28-30]。因此口服CA 的有效成分单体引起HDI 的风险较小。
表3 CA 提取物对CYP2C9 的抑制作用
“-”表示未见报道
5 银杏叶提取物对CYP2C9 的抑制作用
银杏叶提取物是使用最广泛的中药之一,可用于预防认知障碍和精神障碍,也可治疗血管性病变[31]。其提取物及主要活性成分对CYP2C9 的抑制作用见表4。体外实验表明,银杏提取物对CYP2C9 催化的代谢反应可能存在较强的抑制作用[31-33]。其主要成分银杏酸Ⅰ和Ⅱ对CYP2C9 有较强抑制作用[34],另外银杏提取物中的芝麻素、(Z,Z)-1,5-二对羟苯基-1,4-戊二烯(GA-1)和3-壬-8-烯基苯-1,2-二醇(GA-3)对CYP2C9 的活性存在较强至中等水平的抑制[35]。但萜类内酯类化合物,包括银杏内酯A、B、C 和J 以及白果内酯对CYP2C9 的活性都无显著抑制[36-37]。
表4 银杏叶提取物对CYP2C9 的抑制作用
MFC:7-甲氧基-4-三氟甲基香豆素;“-”表示未见报道
体内关于银杏提取物对CYP2C9 活性影响的报道中,仅有1 例病例报道发现同服银杏叶提取物和华法林可出现出血[38]。但健康志愿者相对较短的时间内(1~2 周)口服剂量在120~240 mg 的银杏叶提取物,并未见银杏叶提取物对经CYP2C9 代谢的华法林[39-40]、双氯芬酸、氟比洛芬[41],以及甲苯磺丁脲[42]产生明显的影响,但加大剂量(每天服用360 mg,连续服用28 d)后,发现银杏叶提取物可能诱导CYP2C9 活性[43]。
6 人参提取物及丹参主要活性成分对CYP2C9 的抑制作用
人参为伞形目五加科人参属多年生草本植物,人参具有抗衰老和抗肿瘤等药理作用[44],人参皂苷是其主要活性成分。人参提取物对CYP2C9 的抑制作用见表5。体外研究发现,绝大多数人参皂苷(包括人参皂苷Rb2、Rc、Rg1、Re、Rf、Rh1 及F1)几乎对CYP2C9活性无抑制作用,人参皂苷Rd 有微弱的抑制作用,而人参皂苷化合物K 则对CYP2C9 有中等强度抑制作用[44-45]。此外,尽管人参皂苷Rb1 对甲苯磺丁脲代谢无抑制,但却是双氯芬酸代谢的较强抑制剂[46]。
体内研究发现,单次或多次服用红参提取物,氯沙坦(50 mg)的体内药代动力学参数并未被显著改变[46-48]。
丹参为唇形科植物丹参的干燥根部,被用于治疗胃肠道和心血管等疾病[49]。丹参活性成分对CYP2C9的抑制作用见表5。丹参的主要成分中的二氢丹参酮和丹参新酮对CYP2C9 催化的甲苯磺丁脲代谢可能有强抑制作用,而隐丹参酮可能为中等强度抑制剂[50-51]。此外,隐丹参酮和丹参素也是CYP2C9 催化的双氯酚酸代谢的中等强度抑制剂[52],但原儿茶酸、原儿茶醛、丹酚酸B、丹参酮Ⅰ和丹参酮ⅡA 对CYP2C9 活性均无显著影响[52]。
表5 人参提取物和丹参活性成分对CYP2C9 的抑制作用
“-”表示未见报道
7 生姜及其主要成分、大蒜提取物对CYP2C9 的抑制作用
生姜具有抗菌,抗氧化和抗炎等作用[53]。生姜提取物及其主要成分对CCYP2C9 的抑制作用见表6。生姜提取物对CYP2C9 活性可能有较强的抑制作用[54-55]。Kim 等[56-57]总结了目前已发表的生姜主要成分(6-姜酚、8-姜酚、10-姜酚、6-姜烯酚和姜酮酚)对CYPs 的体外抑制作用结果,其中在人肝微粒体中姜酮酚, 8-姜酚、10-姜酚和6-姜烯酚对CYP2C9 的部分底物代谢的抑制作用较强。但体内研究发现,连续服用5 d 包含3.6 g 生姜的中药产品,对华法林的药代动力学和药效动力学均无影响[39]。这提示生姜及其主要成分在体内引起HDI 的可能性较低。
大蒜被认为是具有保健和疾病预防作用的食用调味品[58]。大蒜主要成分对CYP2C9 的抑制作用见表6。多种大蒜提取物在体外均对CYP2C9*1 的代谢呈抑制作用[59]。其主要活性成分大蒜素(葱科植物大蒜的鳞茎中的有机硫化合物)对CYP2C9 催化的MFC 代谢抑制作用较强[34],但对CYP2C9 催化的氟比洛芬代谢无显著影响[60]。在一种与人原代肝细胞具有相似特性的新型永生化肝细胞(Fa2N-4)细胞系中发现,大蒜提取物浓度在100~200 μg/mL 对CYP2C9 催化代谢的双氯芬酸抑制较强,且呈浓度依赖性,进一步将大蒜浓度调至50 μg/mL 时,仍可在第4 天观察到大蒜提取物对CYP2C9 的底物双氯芬酸的4-羟基化抑制率达90%[61]。由此可见,生姜提取物与经CYP2C9 代谢的药物发生HDI 的可能性较高。
表6 生姜和大蒜主要成分对CYP2C9 的抑制作用
“-”表示未见报道
8 讨论
中草药在全球范围内被越来越频繁地用于疾病预防和治疗,与此同时中草药补充剂与西药同时服用而引起不良反应的报道也越来越多[62]。本文综述了中草药提取物及其主要成分对CYP2C9 催化的药物代谢活性的影响,常用的人参、银杏等均可能影响CYP2C9 的活性改变与其同服的药物的药代动力学性质,进而引发安全性问题。不同底物对同一中草药提取物或其主要成分的活性影响的敏感性不同,这是预测中草药与西药同服是否可能产生HDI 时需要注意的问题。但目前大部分研究为体外研究,体内证据尚不足,且不同实验室间的IC50 之间也存在差异(这可能是研究中使用的底物浓度不同所致),也为HDI的评价带来了困难。
此外,在HDI 评价中还存在一系列难题。包括中草药成分复杂,能吸收入血的成分的研究尚不足,尚缺乏各成分间的协同对CYP2C9 的影响证据。另外,CYP2C9 是一个高度可变的基因,核苷酸测序已经鉴定了近60 个等位基因[63],这些基因多态性增加了HDI的复杂性。
综上所述,中草药与西药同服,基于CYP2C9 抑制可能会造成HDI,影响药物的安全有效使用,但仍需深入研究。
[参考文献]
[1]Magliocco G,Thomas A,Desmeules J,et al.Phenotyping of human CYP450 enzymes by endobiotics:current knowledge and mthodological approaches[J].Clin Pharmacokinet,2019,58(11):1373-1391.
[2]Tornio A,Backman JT.Cytochrome P450 in pharmacogenetics:an update[J].Adv Pharmacol,2018,83:3-32.
[3]Isvoran A,Louet M,Vladoiu DL,et al.Pharmacogenomics of the cytochrome P450 2C family:impacts of amino acid variations on drug metabolism[J].Drug Discov Today,2017,22(2):366-376.
[4]Louet M,Labbe CM,Fagnen C,et al.Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30[J].PLoS One,2018,13(5):e0197249.
[5]Damkier P,Lassen D,Christensen MMH,et al.Interaction between warfarin and cannabis[J].Basic Clin Pharmacol Toxicol,2019,124(1):28-31.
[6]Waring RH.Cytochrome P450:genotype to phenotype[J].Xenobiotica,2020,50(1):9-18.
[7]Zheng E,Sandhu N,Navarro V.Drug-induced liver injury secondary to herbal and dietary supplements[J].Clin Liver Dis,2020,24(1):141-155.
[8]Grewal P,Ahmad J.Severe liver injury due to herbal and dietary supplements and the role of liver transplantation[J].World J Gastroenterol,2019,25(46):6704-6712.
[9]Parvez MK,Rishi V.Herb-drug interactions and hepatotoxicity[J].Curr Drug Metab,2019,20(4):275-282.
[10]Yeung KS,Gubili J,Mao JJ.Herb-drug interactions in cancer care[J].Oncology (Williston Park),2018,32(10):516-520.
[11]Borse SP,Singh DP,Nivsarkar M.Understanding the relevance of herb-drug interaction studies with special focus on interplays:a prerequisite for integrative medicine[J].Porto Biomed J,2019,4(2):e15.
[12]Ma ZF,Zhang H,Teh SS,et al.Goji berries as a potential natural antioxidant medicine:an insight into their molecular mechanisms of action[J].Oxid Med Cell Longev,2019,2019:2437397.
[13]Lam AY,Elmer GW,Mohutsky MA.Possible interaction between warfarin and Lycium barbarum L.[J].Ann Pharmacother,2001,35(10):1199-1201.
[14]Leung H,Hung A,Hui AC,et al.Warfarin overdose due to the possible effects of Lycium barbarum L.[J].Food Chem Toxicol,2008,46(5):1860-1862.
[15]Zhang J,Tian L,Xie B.Bleeding due to a probable interaction between warfarin and Gouqizi (Lycium barbarum L.)[J].Toxicol Rep,2015,2:1209-1212.
[16]Liu R,Tam TW,Mao J,et al.In vitro activity of Lycium barbarum (Goji) against major human phase I metabolism enzymes[J].J Complement Integr Med,2016,13(3):257-265.
[17]Li G,Simmler C,Chen L,et al.Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents[J].Eur J Pharm Sci,2017,109:182-190.
[18]Li G,Huang K,Nikolic D,et al.High-throughput cytochrome P450 cocktail inhibition assay for assessing drug-drug and drug-botanical interactions[J].Drug Metab Dispos,2015,43(11):1670-1678.
[19]Kim SJ,Kim SJ,Hong M,et al.Investigation of selective inhibitory effects of glycyrol on human CYP 1A1 and 2C9[J].Xenobiotica,2016,46(10):857-861.
[20]Li A,Ma N,Zhao Z,et al.Glycyrrhetinic acid might increase the nephrotoxicity of bakuchiol by inhibiting cytochrome P450 isoenzymes[J].Peer J,2016,4:e2723.
[21]Zhao K,Ding M,Cao H,et al.In-vitro metabolism of glycyrrhetinic acid by human and rat liver microsomes and its interactions with six CYP substrates[J].J Pharm Pharmacol,2012,64(10):1445-1451.
[22]Sukumaran NP,Amalraj A,Gopi S.Neuropharmacological and cognitive effects of Bacopa monnieri (L.) Wettst-a review on its mechanistic aspects[J].Complement Ther Med,2019,44:68-82.
[23]Kar A,Pandit S,Mukherjee K,et al.Safety assessment of selected medicinal food plants used in ayurveda through CYP450 enzyme inhibition study[J].J Sci Food Agric,2017,97(1):333-340.
[24]Ramasamy S,Kiew LV,Chung LY.Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents[J].Molecules,2014,19(2):2588-2601.
[25]Tan ML,Lim LE.The effects of Andrographis paniculata(Burm.f.) nees extract and diterpenoids on the CYP450 isoforms′ activities, a review of possible herb-drug interaction risks[J].Drug Chem Toxicol,2015,38(3):241-253.
[26]Pekthong D,Martin H,Abadie C,et al.Differential inhibition of rat and human hepatic cytochrome P450 by Andrographis paniculata extract and andrographolide[J].J Ethnopharmacol,2008,115(3):432-440.
[27]Pan Y,Abd-Rashid BA,Ismail Z,et al.In vitro determination of the effect of Andrographis paniculata extracts and andrographolide on human hepatic cytochrome P450 activities[J].J Nat Med,2011,65(3-4):440-447.
[28]Pan Y,Abd-Rashid BA,Ismail Z,et al.In vitro modulatory effects on three major human cytochrome P450 enzymes by multiple active constituents and extracts of Centella asiatica[J].J Ethnopharmacol,2010,130(2):275-283.
[29]Savai J,Varghese A,Pandita N,et al.In vitro assessment of CYP1A2 and 2C9 inhibition potential of Withania somnifera and Centella asiatica in human liver microsomes[J].Drug Metab Pers Ther,2015,30(2):137-141.
[30]Wright KM,Magana AA,Laethem RM,et al.Centella asiatica water extract shows low potential for cytochrome P450-mediated drug interactions[J].Drug Metab Dispos,2020,48(10):1053-1063.
[31]Mohutsky MA,Anderson GD,Miller JW,et al.Ginkgo biloba:evaluation of CYP2C9 drug interactions in vitro and in vivo[J].Am J Ther,2006,13(1):24-31.
[32]Gaudineau C,Beckerman R,Welbourn S,et al.Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract[J].Biochemical Biophys Res Commun,2004,318(4):1072-1078.
[33]Etheridge AS,Black SR,Patel PR,et al.An in vitro evaluation of cytochrome P450 inhibition and p-glycoprotein interaction with goldenseal,Ginkgo biloba,grape seed,milk thistle,and ginseng extracts and their constituents[J].Planta Med,2007,73(8):731-741.
[34]Zou L,Harkey MR,Henderson GL.Effects of herbal components on cDNA-expressed cytochrome P450 enzyme catalytic activity[J].Life Sci,2002,71(13):1579-1589.
[35]von Moltke LL,Weemhoff JL,Bedir E,et al.Inhibition of human cytochromes P450 by components of Ginkgo biloba[J].J Pharm Pharmacol,2004,56(8):1039-1044.
[36]He N,Edeki T.The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes[J].Am J Ther,2004,11(3):206-212.
[37]Numa AM,Abbott FS,Chang TK.Effect of Ginkgo biloba extract on oxidative metabolism of valproic acid in hepatic microsomes from donors with the CYP2C9*1/*1 genotype[J].Can J Physiol Pharmacol,2007,85(9):848-855.
[38]Matthews MK, Jr.Association of Ginkgo biloba with intracerebral hemorrhage[J].Neurology,1998,50(6):1933-1934.
[39]Jiang X,Williams KM,Liauw WS,et al.Effect of ginkgo and ginger on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects[J].Br J Clin Pharmacol,2005,59(4):425-432.
[40]Engelsen J,Nielsen JD,Winther K.Effect of coenzyme Q10 and Ginkgo biloba on warfarin dosage in stable, long-term warfarin treated outpatients.A randomised, double blind,placebo-crossover trial[J].Thromb Haemost,2002,87(6):1075-1076.
[41]Greenblatt DJ,von Moltke LL,Luo Y,et al.Ginkgo biloba does not alter clearance of flurbiprofen,a cytochrome P450-2C9 substrate[J].J Clin Pharmacol,2006,46(2):214-221.
[42]Zadoyan G,Rokitta D,Klement S,et al.Effect of Ginkgo
biloba special extract EGb 761on human cytochrome P450 activity:a cocktail interaction study in healthy volunteers[J].Eur J Clin Pharmacol,2012,68(5):553-560.
[43]Uchida S,Yamada H,Li XD,et al.Effects of Ginkgo biloba extract on pharmacokinetics and pharmacodynamics of tolbutamide and midazolam in healthy volunteers[J].J Clin Pharmacol,2006,46(11):1290-1298.
[44]Xiao J,Chen D,Lin XX,et al.Screening of drug metabolizing enzymes for the ginsenoside compound K In vitro:An efficient anti-cancer substance originating from panax ginseng[J].PLoS One,2016,11(2):e0147183.
[45]Henderson GL,Harkey MR,Gershwin ME,et al.Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity [J].Life Sci,1999,65 (15):209-214.
[46]Seong SJ,Kang WY,Heo J-K,et al.A Comprehensive In Vivo and In Vitro Assessment of the Drug Interaction Potential of Red Ginseng[J].Clin Ther,2018,40(8):1322-1337.
[47]Kim MG,Kim Y,Jeon JY,et al.Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach[J].Br J Clin Pharmacol,2016,82(6):1580-1590.
[48]Kim DS,Kim Y,Jeon JY,et al.Effect of red ginseng on cytochrome P450 and p-glycoprotein activities in healthy volunteers[J].J Ginseng Res,2016,40(4):375-381.
[49]Du G,Song J,Du L,et al.Chemical and pharmacological research on the polyphenol acids isolated from Danshen:A review of salvianolic acids[J].Adv Pharmacol,2020,87:1-41.
[50]Wang X,Cheung CM,Lee WY,et al.Major tanshinones of danshen (Salvia miltiorrhiza)exhibit different modes of inhibition on human CYP1A2,CYP2C9,CYP2E1 and CYP3A4 activities in vitro[J].Phytomedicine,2010,17(11):868-875.
[51]Zhou X,Wang Y,Hu T,et al.Enzyme kinetic and molecular docking studies for the inhibitions of miltirone on major human cytochrome P450 isozymes[J].Phytomedicine,2013,20(3-4):367-374.
[52]Qiu F,Zhang R,Sun J,et al.Inhibitory effects of seven components of danshen extract on catalytic activity of cytochrome P450 enzyme in human liver microsomes[J].Drug Metab Dispos,2008,36(7):1308-1314.
[53]Banihani SA.Ginger and testosterone[J].Biomolecules,2018,8(4):119.
[54]Kimura Y,Ito H,Hatano T.Effects of mace and nutmeg on human cytochrome P450 3A4 and 2C9 activity[J].Biol Pharm Bull,2010,33(12):1977-1982.
[55]Qiu JX,Zhou ZW,He ZX,et al.Estimation of the binding modes with important human cytochrome P450 enzymes,drug interaction potential,pharmacokinetics,and hepatotoxicity of ginger components using molecular docking,computational,and pharmacokinetic modeling studies[J].Drug Des Devel Ther,2015,9:841-866.
[56]Kim HJ,Kim IS,Rehman SU,et al.Effects of 6-paradol, an unsaturated ketone from gingers, on cytochrome P450-mediated drug metabolism[J].Bioorg Med Chem Lett,2017,27(8):1826-1830.
[57]Li M,Chen PZ,Yue QX,et al.Pungent ginger components modulates human cytochrome P450 enzymes in vitro[J].Acta Pharmacol Sin,2013,34(9):1237-1242.
[58]Ansary J,Forbes -Hernandez TY,Gil E,et al.Potential health benefit of garlic based on human intervention studies:a brief overview[J].Antioxidants (Basel),2020,9(7):619.
[59]Foster BC,Foster MS,Vandenhoek S,et al.An in vitro evaluation of human cytochrome P450 3A4 and p-glycoprotein inhibition by garlic[J].J Pharm Pharm Sci,2001,4(2):176-184.
[60]Greenblatt DJ,Leigh-Pemberton RA,von Moltke LL.In vitro interactions of water-soluble garlic components with human cytochromes p450[J].J Nutr,2006,136(3 Suppl):806S-809S.
[61]Ho BE,Shen DD,McCune JS,et al.Effects of garlic on cytochromes P450 2C9- and 3A4-mediated drug metabolism in human hepatocytes[J].Sci Pharm,2010,78(3):473-481.
[62]Amadi CN,Mgbahurike AA.Selected food/herb-drug interactions:mechanisms and clinical Relevance[J].Am J Ther,2018,25(4):e423-e433.
[63]Byeon JY,Kim YH,Kim SH,et al.The influences of CYP2C9*1/*3 genotype on the pharmacokinetics of zolpidem[J].Arch Pharm Res,2018,41(9):931-936.
Research progress in the investigation of inhibitory effect of common Chinese herbal extracts and major components on Cytochrome P450 2C9
CHEN Yue-yue1 LIU Yong2 LI Dong-dong1 HUANG Hao1 CAO Yun-ming1 DING Qian3 LI Wei1▲
1. Translational Medicine Research Institute, College of Medicine, Yangzhou University, Jiangsu Province, Yangzhou 225009, China; 2. School of Life and Pharmaceutical Sciences, Dalian University of Technology, Liaoning Province,Dalian 124221, China; 3. Department of Pharmacy, Jiangdu People′s Hospital Affiliated to Yangzhou University,Jiangsu Province, Yangzhou 225214, China [Abstract] Chinese herbs and Western medicine are frequently applied in combination for disease treatment and prevention currently. The complicated components of Chinese Herbs may affect the activity of drug metabolism enzymes,and thus lead to herb-drug interaction (HDI). However, HDI has been neglected. Cytochrome P450 2C9 (CYP2C9), a phase I drug metabolism enzyme, is responsible for the metabolism of more than 15% drugs, including several narrow therapeutic window drugs. Evaluation of the CYP2C9 activity alteration is essential for HDI prediction. The current article reviewed the inhibitory effect on CYP2C9 of the common Chinese herbal extracts and major components, such as Ginkgo Biloba, Ginseng, Danshen, Ginger and Garlic. The aim is to provide theoretical basis for rational use of Chinese herbs and Western medicine in clinic.
[Key words] Cytochrome P450 2C9; Chinese herbs; Drug metabolism; Herb-drug interaction
[中图分类号] R968
[文献标识码] A
[文章编号] 1674-4721(2021)6(a)-0025-07
[基金项目]国家重点研发计划课题(2017YFC1702006);江苏省扬州市科技计划项目(市级计划——社会发展项目)(YZ2020084);扬州大学大学生科创基金项目(X20190747、X20190746、X20200754)
[作者简介]陈悦悦(1994-),女,扬州大学医学院2019 级中药学专业在读硕士研究生,研究方向:药物代谢
▲通讯作者:李巍(1982-),女,辽宁开原人,博士,讲师,研究方向:药物代谢
(收稿日期:2020-12-29)
|