鼠肉瘤病毒癌基因突变非小细胞肺癌靶向治疗研究进展
戴南利1,2 向明钧1 杜 维3 肖泽民1,2▲
1.吉首大学医学院,湖南吉首 416000;2.湖南省常德市第一人民医院肿瘤科,湖南常德 415000;3.湖南省常德市第一人民医院病理科,湖南常德 415000
[摘要]鼠肉瘤病毒癌基因(KRAS)突变是非小细胞肺癌中最常见的驱动基因突变之一,尽管在几十年前就已经发现KRAS 基因突变,但由于其独特的生物特性,靶向治疗KRAS 基因突变非小细胞肺癌一直面临瓶颈。然而新型KRAS G12C 抑制剂的面世打破了这一僵局,使KRAS 基因突变非小细胞肺癌靶向治疗得到进一步发展。目前国内外靶向KRAS 突变非小细胞肺癌的研究机制主要是抑制膜定位、直接抑制KRAS 基因、靶向抑制KRAS 下游信号及抑制KRAS 突变协同致死基因等。本综述概述KRAS 基因突变非小细胞肺癌靶向治疗的研究进展,以便于临床医师更加深入了解这一特殊类型非小细胞肺癌的靶向治疗。
[关键词]鼠肉瘤病毒癌基因突变;鼠肉瘤病毒癌基因G12C 抑制剂;非小细胞肺癌;靶向治疗
肺癌是全球发病率及死亡率最高的恶性肿瘤,其中非小细胞肺癌(NSCLC)占到80%~85%,主要包括腺癌和鳞癌,超过50%的肺癌患者在确诊时已为晚期,失去了根治性手术的机会[1-2]。由于治疗手段有限,晚期NSCLC 的预后很差,但靶向及免疫治疗的发展改变了这一现状,提高了晚期NSCLC 生存率[3]。鼠肉瘤病毒癌基因(KRAS)突变为NSCLC 中最常见的基因突变之一,其多发于白种人[4]。
KRAS 基因编码细胞内鸟嘌呤核苷酸结合蛋白,起着鸟苷二磷酸(GDP)/鸟苷三磷酸(GTP)二元开关的作用,与GTP 结合激活KRAS,与GDP 结合使其失活,鸟嘌呤核苷酸交换因子(GEFs)和鸟嘌呤三磷酸酶活化蛋白(GAPs)调节GTP 和GDP 之间的转换[3]。KRAS-GTP 可激活多个信号级联,其中包括经典的RAS-RAF-MEK-ERK 通路和PI3K-AKT-mTOR 通路,调节肿瘤细胞的生长、增殖、分化和凋亡[5]。
Santos 等[6]首次确定了KRAS 基因和肺癌之间的关系。15%~25%的NSCLC 患者存在KRAS 基因突变,其中97%的KRAS 突变发生在外显子2 和3,最常见的是G12C 点突变[7]。KRAS 突变在肺腺癌和吸烟者中更常见[8]。而且KRAS 突变型NSCLC 患者与KRAS 野生型NSCLC 患者相比,无进展生存期明显缩短[9]。虽然KRAS 基因在NSCLC 中突变频率高,针对KRAS突变肺癌的研究不断,但是一直没有有效的靶向药物面世。
在这篇综述中,对KRAS 基因突变NSCLC 靶向治疗研究进展作一简要概述,以便于临床医师更加深入了解KRAS 突变NSCLC 的靶向治疗,从而有利于临床决策。
1 针对KRAS 突变NSCLC 靶向治疗
1.1 抑制KRAS 膜定位
KRAS 膜定位依赖于其法尼基化,而法尼基化主要由法尼基转移酶(FTase)催化[10],因此用法尼基转移酶抑制剂(FTI)来抑制KRAS 膜定位在理论上是可行。实际中开发了多种FTI,主要包括Tiparfinib、Lonafarnib和Salirasib,但均被证实对KRAS 突变NSCLC 人群无效[11-12],其原因可能是香叶基转移酶对KRAS 基因选择性修饰,致使KRAS 基因扩增或脱靶效应[13]。另外,RCE1 和ICMT 是两种CAAX 信号RAS 处理酶,这两种酶的抑制剂同样可以破坏KRAS 膜定位,但抑制RCE1 和ICMT 会影响其他蛋白的正常功能,这导致RCE1 和ICMT 抑制剂存在正常组织毒性问题[14]。抑制RCE1 和ICMT 可能与KRAS G12D 的激活同时发生,导致细胞增殖增强,上皮内瘤变增加,因此RCE1或ICMT 抑制剂并不是治疗KRAS 突变NSCLC 的良好候选药物[15]。
2 直接抑制KRAS
直接抑制KRAS 基因在临床上是有困难的,但KRAS G12C 抑制剂的面世,使上述困难得到改变,对KRAS G12C 的直接不可逆变构抑制破坏了天然核苷酸的偏好性,从而使非活性GDP 优于活性GTP KRAS[16]。AMG 510 能抑制KRAS G12C 突变型蛋白活性,将KRAS 锁定在非活性的GDP 结合状态,Ⅰ期临床试验结果显示:在10 例可评估的NSCLC 患者中,有5 例(50%)患者获得部分缓解,有4 例(40%)患者达到疾病稳定,疾病控制率(DCR)达到90%,且药物安全性好,正在进行Ⅱ期临床试验[17]。MRTX849 是另一种口服的KRAS G12C 突变选择性小分子抑制剂,其Ⅰ期临床研究同样取得了令人满意的结果,在NSCLC患者中客观缓解率(ORR)为50%,DCR 达到100%[18]。另外,Feng 等[19]最近报道KRAS G12D 也具有潜在的变构小分子结合位点,当KRAS 变构配体化合物KAL-21404358 与KRAS G12D 结合后,其与BRAF的相互作用减弱,干扰信号通路,从而抑制KRAS G12D肿瘤的形成。
3 抑制KRAS 下游信号
KRAS 活化可激活下游多个信号通路,主要包括MAPK 通路(RAS-RAF-MEK-ERK) 和PI3K 通路(PI3K-AKT-mTOR),这两个通路和肿瘤细胞增殖、存活、迁移和侵袭密切相关[5]。因此抑制KRAS 下游信号是目前热门研究之一。KRAS 下游信号主要包括激酶RAF、MEK、PI3K 和mTOR,都是潜在的可干预靶点,它们的抑制剂已在多个NSCLC 的临床试验中进行[15]。
3.1 RAF 抑制剂
RAF 主要包括A-、B-和C-RAF。目前还不清楚这些单独的RAF 激酶是如何促进KRAS 突变肿瘤的发生和发展[20]。有研究表明,C-RAF 而不是B-RAF 在介导KRAS 致癌信号中发挥关键作用[21-22]。靶向C-RAF激酶可以引起KRAS 消融,并有效抑制肿瘤的发展,而不会在KRAS/Trp53 突变型小鼠肺腺癌模型中产生明显的毒性[20]。C-RAF 消融完全阻止了KRAS 突变肿瘤的发生,而B-RAF 消融则没有,这说明B-RAF 对于KRAS 的致癌信号不是必须的[23]。C-RAF 才是具有潜力的治疗靶点。
3.2 MEK 抑制剂
MEK 是KRAS 下游信号转导蛋白,因此抑制MEK 可能对KRAS 突变NSCLC 有效,然而在临床试验中,MEK 抑制剂单药的疗效一直不高[24]。司美替尼是一种高选择性MEK 抑制剂,在Ⅱ期临床试验中,接受司美替尼+多西他赛治疗并携带KRAS G12C 或G12V 突变的患者,与其他KRAS 突变患者相比,总生存期(OS)、无进展生存期(PFS)和客观缓解率(ORR)有更大的改善趋势[25]。最终SELECT-1 临床试验表明司美替尼联合多西他赛较多西他赛单药,并不能改善KRAS 突变NSCLC 患者的OS 和PFS,并且副作用较多[26]。曲美替尼是另一种选择性MEK 抑制剂,在129例KRAS 突变晚期NSCLC 患者中,比较了单药曲美替尼和多西他赛的疗效,两组患者的PFS 及ORR 比较,差异无统计学意义[27]。另一种口服MEK 抑制剂比尼替尼(MEK162)正在进行多项临床试验中[28]。
3.3 PI3K 通路抑制
PI3K 也是KRAS 下游的效应激酶,与细胞增殖、存活、粘附和瘤变密切相关[29]。Pictilisib(GDC-0941)是一种口服PI3Ks 抑制剂,在Ⅰ期研究中显示出良好的安全性和耐受性,但其在NSCLC 的疗效尚待临床试验证[29]。Buparlisib(BKM120)是一种广谱PI3K 抑制剂,BASALT-1 研究结果显示:鳞癌和非鳞癌的12 周无进展生存率分别为23.3%和20.0%,PI3K 抑制剂联合其他药物可能比单药治疗更有效[30]。PI3K 抑制剂有望提高KRAS 突变NSCLC 的临床疗效。
3.4 mTOR 抑制剂
mTOR 也是KRAS 下游的效应激酶。已经研究了几种mTOR 抑制剂(西罗莫司、依维莫司、地磷莫司)并在NSCLC 中进行了临床试验[31]。临床研究表明,地磷莫司是治疗晚期NSCLC 的良好选择,其被研究用于KRAS 突变晚期NSCLC 患者,可显著改善PFS,但OS 无显著差异[32]。因此,抑制mTOR 是治疗KRAS 突变NSCLC 的希望之路,但需要更多的临床数据支持。
4 抑制KRAS 突变协同致死基因
有研究发现抑制KRAS 基因相互作用的协同致死基因也可杀伤肿瘤细胞[33]。KRAS 突变NSCLC 细胞依赖于GATA2,无论在体外还是体内,失去GATA2都会降低KRAS 突变NSCLC 细胞的生存能力[34]。另外,Wu 等[35]发现WT1 影响KRAS 突变NSCLC 细胞中多个凋亡相关调节因子,WT1 可直接激活KRAS突变细胞中的cMyc 启动子,对于KRAS 突变NSCLC的治疗,以WT1 和cMyc 为靶点可能是有效的替代治疗策略。Barbie 等[36]确定TKB1 是致癌KRAS 的协同致死基因,TBK1 激活与NF-κB 抗凋亡信号密切相关,NF-κB 蛋白酶抑制剂硼替佐米在KRAS G12D 突变NSCLC 患者中使用,其中位OS 达到13 个月[37]。
5 其他
5.1 CDK4/6 抑制剂
临床前研究表明,KRAS 突变NSCLC 细胞对CDK4/6 抑制剂敏感[38]。JUNIPER 研究表明:Abemaciclib 与Erlotinib 比较,在PFS 和ORR 方面有显著改善,但OS 并无显著差异[39]。CDK4/6 抑制剂与MEK 抑制剂联合的研究正在进行中,Shapiro 等[40]在25 例KRAS 突变肿瘤患者中进行了CDK4/6 抑制剂Palbociclib 联合MEK1/2 抑制剂PD-0325901 的Ⅰ期研究,其中17 例为KRAS 突变NSCLC,1 例NSCLC 患者部分缓解,5 例NSCLC 患者病情控制了6 个月以上。
5.2 热休克蛋白抑制剂
热休克蛋白90(HSP90)的功能是作为分子伴侣,促进蛋白质的折叠、翻转、稳定。HSP90 活性在肿瘤细胞中明显增高,这使HSP90 有希望成为抗肿瘤药物靶点,但HSP90 抑制剂Ganetespib 在KRAS 突变NSCLC中的临床试验结果并不理想[41]。AUY922 是另一种HSP90 抑制剂,体内外实验均证明其能抑制肿瘤生长,Ⅱ期临床试验结果表明,AUY922 在NSCLC 患者中是有效的[42]。
6 展望
目前酪氨酸酶抑制剂和免疫检查点抑制剂已经改变了NSCLC 的治疗策略,使NSCLC 患者的预后得到改善。KRAS 基因突变NSCLC 靶向治疗一直具有挑战性,但是KRAS G12C 抑制剂、KRAS 下游效应分子抑制剂都显现出令人期待的发展前景,特别是多种靶向KRAS 药物联合,已在临床前研究中表现出协同作用,联合用药将成为改善KRAS 突变NSCLC 患者生存的必然趋势。我们相信KRAS 基因突变NSCLC靶向治疗在未来不再是难题。
[参考文献]
[1]Friedlaender A,Banna G,Malapelle U,et al.Next Generation Sequencing and Genetic Alterations in Squamous Cell Lung Carcinoma:Where Are We Today?[J].Front Oncol,2019,9:166.
[2]Siegel RL,Miller KD,Jemal A.Cancer statistics,2020[J].CA Cancer J Clin,2020,70(1):7-30.
[3]Friedlaender A,Drilon A,Weiss GJ,et al.KRAS as a druggable target in NSCLC:Rising like a phoenix after decades of development failures[J].Cancer Treat Rev,2020,85:101978.
[4]Ghimessy A,Radeczky P,Laszlo V,et al.Current therapy of KRAS-mutant lung cancer[J].Cancer and Metastasis Rev,2020,39(4):1159-1177.
[5]Román M,Baraibar I,López I,et al.KRAS oncogene in non-small cell lung cancer:clinical perspectives on the treatment of an old target[J].Mol Cancer,2018,17(1):33.
[6]Santos E,Martin-Zanca D,Reddy EP,et al.Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient[J].Science,1984,223(4637):661-664.
[7]Wood K,Hensing T,Malik R,et al.Prognostic and Predictive Value in KRAS in Non-Small-Cell Lung Cancer:A Review[J].JAMA Oncol,2016,2(6):805-812.
[8]Garrido P,Olmedo ME,Gómez A,et al.Treating KRAS-mutant NSCLC:latest evidence and clinical consequences[J].Ther Adv Med Oncol,2017,9(9):589-597.
[9]Jia Y,Jiang T,Li X,et al.Characterization of distinct types of KRAS mutation and its impact on first-line platinum-based chemotherapy in Chinese patients with advanced non-small cell lung cancer[J].Oncol Lett,2017,14(6):6525-6532.
[10]Nussinov R,Jang H,Tsai CJ,et al.Intrinsic protein disorder in oncogenic KRAS signaling[J].Cell Mol Life Sci,2017,74(17):3245-3261.
[11]Adjei AA,Mauer A,Bruzek L,et al.Phase Ⅱstudy of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer[J].J Clin Oncol,2003,21(9):1760-1766.
[12]Riely GJ,Johnson ML,Medina C,et al.A phase Ⅱtrial of Salirasib in patients with lung adenocarcinomas with KRAS mutations[J].J Thorac Oncol,2011,6(8):1435-1437.
[13]Tomasini P,Walia P,Labbe C,et al.Targeting the KRAS Pathway in Non-Small Cell Lung Cancer[J].Oncologist,2016,21(12):1450-1460.
[14]Cox AD,Fesik SW,Kimmelman AC,et al.Drugging the undruggable RAS: Mission possible?[J].Nat Rev Drug Discov,2014,13(11):828-851.
[15]Nagasaka M,Li Y,Sukari A,et al.KRAS G12C Game of Thrones,which direct KRAS inhibitor will claim the iron throne?[J].Cancer Treat Rev,2020,84:101974.
[16]Janes MR,Zhang J,Li LS,et al.Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor[J].Cell,2018,172(3):578-589.
[17]Fakih M,O′Neil B,Price TJ,et al.Phase 1 study evaluating the safety,tolerability,pharmacokinetics(PK),and efficacy of AMG 510,a novel small molecule KRASG12C inhibitor,in advanced solid tumors[J].J Clin Oncol,2019,37:3003.
[18]J nne PA,Papadopoulous K,Ou I,et al.A Phase 1 clinical trial evaluating the pharmacokinetics(PK),safety,and clinical activity of MRTX849,a mutant-selective small molecule KRAS G12C inhibitor,in advanced solid tumors[C].AACRNCI-EORTC International Conference on Molecular Targets,Boston,America:2019.
[19]Feng H,Zhang Y,Bos PH,et al.K-Ras G12D Has a Potential Allosteric Small Molecule Binding Site[J].Biochemistry,2019,58(21):2542-2554.
[20]Yang H,Liang SQ,Schmid RA,et al.New Horizons in KRAS-Mutant Lung Cancer:Dawn After Darkness[J].Front Oncol,2019,9:953.
[21]Blasco RB,Francoz S,Santamaría D,et al.c-Raf,but not B-Raf,is essential for development of K-Ras oncogenedriven non-small cell lung carcinoma[J].Cancer Cell,2011,19(5):652-663.
[22]Terrell EM,Durrant DE,Ritt DA,et al.Distinct Binding Preferences between Ras and Raf Family Members and the Impact on Oncogenic Ras Signaling[J].Mol Cell,2019,76(6):872-884.
[23]Blasco MT,Navas C,Martín-Serrano G,et al.Complete Regression of Advanced Pancreatic Ductal Adenocarcinomas upon Combined Inhibition of EGFR and C-RAF[J].Cancer Cell,2019,35(4):573-587.
[24]Matikas A,Mistriotis D,Georgoulias V,et al.Targeting KRAS mutated non-small cell lung cancer:A history of failures and a future of hope for a diverse entity[J].Crit Rev Oncol Hematol,2017,110:1-12.
[25]Jnne PA,Smith I,McWalter G,et al.Impact of KRAS codon subtypes from a randomised phase Ⅱtrial of selumetinib plus docetaxel in KRAS mutant advanced non-small-cell lung cancer[J].Br J Cancer,2015,113(2):199-203.
[26]Jnne PA,van den Heuvel MM,Barlesi F,et al.Selumetinib Plus Docetaxel Compared With Docetaxel Alone and Progression-Free Survival in Patients With KRAS-Mutant Advanced Non-Small Cell Lung Cancer:The SELECT -1 Randomized Clinical Trial[J].JAMA,2017,317(18):1844-1853.
[27]Blumenschein GR Jr,Smit EF,Planchard D,et al.A randomized phase Ⅱ study of the MEK1/MEK2 inhibitor trametinib(GSK1120212)comparedwithdocetaxelinKRASmutant advanced non-small-cell lung cancer(NSCLC)[J].Ann Oncol,2015,26(5):894-901.
[28]Aredo JV,Padda SK.Management of KRAS-Mutant Non-Small Cell Lung Cancer in the Era of Precision Medicine[J].Curr Treat Options Oncol,2018,19(8):43.
[29]Yamamoto N,Fujiwara Y,Tamura K,et al.Phase Ⅰa/Ⅰb study of the pan-class ⅠPI3K inhibitor pictilisib(GDC-0941) administered as a single agent in Japanese patients with solid tumors and in combination in Japanese patients with non-squamous non-small cell lung cancer[J].Invest New Drugs,2017,35(1):37-46.
[30]Vansteenkiste JF,Canon JL,De Braud F,et al.Safety and Efficacy of Buparlisib(BKM120) in Patients with PI3K Pathway-Activated Non-Small Cell Lung Cancer:Results from the Phase ⅡBASALT-1 Study[J].J Thorac Oncol,2015,10(9):1319-1327.
[31]Tan AC.Targeting the PI3K/Akt/mTOR pathway in nonsmall cell lung cancer(NSCLC)[J].Thorac Cancer,2020,11:511-518.
[32]Riely G,Brahmer J,Planchard D,et al.A randomized discontinuation phase Ⅱtrial of ridaforolimus in non-small cell lung cancer(NSCLC)patients with KRAS mutations[J].J Clin Oncol,2012,30:7531.
[33]Aguirre AJ,Hahn WC.Synthetic Lethal Vulnerabilities in KRAS-Mutant Cancers[J].Cold Spring Harb Perspect Med,2018,8(8):a031518.
[34]Kumar MS,Hancock DC,Molina-Arcas M,et al.The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer[J].Cell,2012,149(3):642-655.
[35]Wu C,Wang S,Xu C,et al.WT 1 enhances proliferation and impedes apoptosis in KRAS mutant NSCLC via targeting cMyc[J].Cell Physiol Biochem,2015,35(2):647-662.
[36]Barbie DA,Tamayo P,Boehm JS,et al.Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1[J].Nature,2009,462(7269):108-112.
[37]Drilon A,Schoenfeld AJ,Arbour KC,et al.Exceptional responders with invasive mucinous adenocarcinomas:a phase 2 trial of bortezomib in patients with KRAS G12D-mutant lung cancers[J].Cold Spring Harb Mol Case Stud,2019,5(2):a003665.
[38]Mao CQ,Xiong MH,Liu Y,et al.Synthetic lethal therapy for KRAS mutant non-small-cell lung carcinoma with nanoparticle-mediated CDK4 siRNA delivery[J].Mol Ther,2014,22(5):964-973.
[39]Goldman JW,Mazieres J,Barlesi F,et al.A randomized phase 3 study of abemaciclib versus erlotinib in previously treated patients with stage ⅣNSCLC with KRAS mutation:JUNIPER[J].J Clin Oncol,2018,36(15):9025.
[40]Shapiro GI,Hilton J,Gandi L,et al.Abstract CT046:PhaseⅠdose escalation study of the CDK4/6 inhibitor palbociclib in combination with the MEK inhibitor PD-0325901 in patients with RAS mutant solid tumors[J].Cancer Res,2017,77:CT046.
[41]Ramalingam S,Goss G,Rosell R,et al.A randomized phaseⅡstudy of ganetespib,a heat shock protein 90 inhibitor,in combination with docetaxel in second-line therapy of advanced non-small cell lung cancer(GALAXY-1)[J].Ann Oncol,2015,26(8):1741-1748.
[42]Felip E,Barlesi F,Besse B,et al.Phase 2 Study of the HSP-90 Inhibitor AUY922 in Previously Treated and Molecularly Defined Patients with Advanced Non-Small Cell Lung Cancer[J].J Thorac Oncol,2018,13(4):576-584.
Research progress on targeted therapy of Kirsten rat sarcoma virus oncogene mutation in non-small cell lung cancer
DAI Nan-li1,2 XIANG Ming-jun1 DU Wei3 XIAO Ze-min1,2▲
1.Jishou University School of Medicine, Hu′nan Province, Jishou 416000, China; 2.Department of Oncology, the First People′s Hospital of Changde City, Hu′nan Province, Changde 415000, China; 3.Department of Patholoy, the First People′s Hospital of Changde City, Hu′nan Province, Changde 415000, China [Abstract]Kirsten rat sarcoma viral oncogene (KRAS) mutation is one of the most common driver gene mutations in non-small cell lung cancer.Although KRAS mutation was discovered decades ago,target therapy of non-small cells with KRAS mutations has been a bottleneck due to their unique biological characteristics.However, the emergence of new KRAS G12C inhibitors broke this deadlock and further developed targeted therapy for non-small cell lung cancer with mutations in the KRAS gene.The research mechanism of targeting KRAS mutant non-small cell lung cancer at home and abroad is mainly to inhibit membrane localization, directly inhibit KRAS gene, target inhibition of KRAS downstream signals, and inhibit KRAS mutation co-lethal genes.This review summarizes the research progress of targeted therapy for non-small cell lung cancer with mutations in the KRAS gene, so that clinicians can have a deeper understanding of targeted therapy for this particular type of non-small cell lung cancer.
[Key words]Kirsten rat sarcoma viral oncogene mutation; Kirsten rat sarcoma viral oncogene G12C inhibitors; Nonsmall cell lung cancer; Target therapy
[中图分类号]R734
[文献标识码]A
[文章编号]1674-4721(2021)4(a)-0028-05
[基金项目]湖南省临床医疗技术创新引导项目(2018SK50 204)
▲通讯作者
(收稿日期:2020-09-09)
|