|
|
Application value of image-based preliminary artificial intelligence detection in the diagnosis and treatment of neonatal jaundice |
HU An-hui ZONG Yu-min HU Xiao-hua LUO Yong FU Si-yong |
Department of Neonatology, Maternity & Child Care Center of Xinyu, Jiangxi Province, Xinyu 338000, China |
|
|
Abstract Objective To explore the application value of image-based preliminary artificial intelligence detection in the diagnosis and treatment of neonatal jaundice. Methods The clinical data of 200 neonates with jaundice in Maternity& Child Care Center of Xinyu from October 2018 to December 2019 were retrospectively analyzed. According to the types of jaundice, the neonates were divided into physiological jaundice group (n=102) and pathological jaundice group(n=98). Diag analysis detection system was used to collect relevant data of the two groups of children patients. The neonatal transcutaneous bilirubin (TcB), automated image-based bilirubin (AIB) and new artificial intelligence bilirubin(DiagB) were compared between the two groups. Receiver operating characteristics (ROC) curve was used to describe the diagnostic efficacy of the above quantitative parameters on neonatal pathological jaundice. The accuracy of DiagB in the diagnosis of neonatal jaundice was calculated by using total serum bilirubin (TSB) as the gold standards for the diagnosis of neonatal jaundice. Results The detection values of TcB, AIB and DiagB in pathological jaundice group were higher than those in physiological jaundice group, the differences were statistically significant (P<0.05). The area under ROC curves (AUC) of TcB, AIB and DiagB in the diagnosis of pathological jaundice were 0.774, 0.764 and 0.792, and the cut-off values were 228.59 μmol/L, 213.13 μmol/L and 214.96 μmol/L respectively. The sensitivity,specificity, accuracy rate, positive predictive value, negative predictive value and Kappa value of DiagB in the diagnosis of neonatal pathological jaundice were 74.49% (73/98), 77.45% (79/102), 76.00% (152/200), 76.04% (73/96), 75.96%(79/104) and 0.520. Conclusion Image-based DiagB value detection has high efficacy in diagnosing neonatal pathological jaundice, and it is highly consistent with serum TSB and biochemical test results. Thus it can provide a new safe and non-invasive monitoring method for neonatal pathological jaundice.
|
|
|
|
|
[1] |
吴静.新生儿病理性黄疸病因临床分析[J].中国药物与临床,2019,19(12):2065-2066.
|
[2] |
范晓鋆,陈伟.新生儿黄疸动态检测及早期干预治疗疗效观察[J].安徽医学,2015,10(6):693-695.
|
[3] |
诸秀清.联合检测溶血三项和血清中总胆红素水平对由ABO-新生儿溶血病引起高胆红素血症的早期诊断价值[J].中国妇幼保健,2020,35(4):677-679.
|
[4] |
薛国昌,丁学星,陈娜,等.黄疸比色卡辅助目测识别新生儿高胆红素血症[J].中华实用儿科临床杂志,2018,33(22):1731-1734.
|
[5] |
中华医学会儿科学分会新生儿学组,《中华儿科杂志》编辑委员会.新生儿高胆红素血症诊断和治疗专家共识[J].中华儿科杂志,2014,52(10):745-748.
|
[6] |
赵冬莹,张拥军.新生儿高胆红素血症的治疗进展[J].临床儿科杂志,2012,30(9):887-889.
|
[7] |
徐春彩,包盈颖,朱佳骏,等.新生儿溶血症患者居家黄疸检测远程随访研究[J].浙江大学学报(医学版),2020,49(5):651-655.
|
[8] |
吴菲,冯向春,付蓉,等.新生儿高胆红素血症相关影响因素Logistic 回归分析[J].河北医科大学学报,2018,39(3):347-350.
|
[9] |
嵇升云,张惠,孙婷婷.黄疸比色卡在新生儿黄疸健康宣教中的应用效果[J].解放军护理杂志,2018,35(10):71-73.
|
[10] |
杨文青,詹玉,聂睿,等.经皮胆红素检测在新生儿溶血性黄疸中的研究[J].检验医学与临床,2017,14(8):1063-1064.
|
[11] |
张雷,董巧丽.胆红素的变化与新生儿黄疸发生程度的相关性[J].中国妇幼健康研究,2018,158(6):738-741.
|
[12] |
容志惠,罗芳,马丽亚,等.基于智能手机应用软件拍照检测对新生儿高胆红素血症随访的意义[J].中华儿科杂志,2016,54(8):597-600.
|
[13] |
李媛,张恩龙,李文娟,等.人工智能在骨肌系统影像领域的研究进展[J].中国医学科学院学报,2020,42(2):242-246.
|
[14] |
杨波,黄迪,高翔羽,等.智能手机软件拍照检测新生儿及早期婴儿黄疸的应用研究[J].中华新生儿科杂志(中英文),2018,33(4):277-282.
|
[15] |
秦锋,袁久洪.人工智能在泌尿疾病诊断中的应用现状与趋势[J].生物医学工程学杂志,2020,37(2):230-235.
|
[16] |
李甜,李晓东,刘敬禹.人工智能辅助诊断肺结节的临床价值研究[J].中国全科医学,2020,23(7):828-831,836.
|
[17] |
查锦芬,童晓红,董海峰.双色黄疸仪检测新生儿黄疸的研究[J].分析仪器,2019,224(3):79-82.
|
|
|
|