|
|
Study on the mechanism of Pulsatilliae Radix in the treatment of tuberculosis based on network pharmacology |
LIU Yan-xia1 REN Ming-hui2 DU Bao-zhong2▲ |
1.Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and Chinese Medicine Research Institute,Ningxia Hui Autonomous Region,Yinchuan 750021,China;
2.Plateau Health Science Research Center,Tibet University,Tibet,Lhasa 850000,China |
|
|
Abstract Objective To screen the active constituents of Pulsatilliae Radix based on the method of network pharmacology,to predict the potential therapeutic targets of pulmonary tuberculosis and to explore its potential mechanism.Methods Pulsatilliae Radix ingredients,corresponding targets and target genes related to the treatment of pulmonary tuberculosis were selected from the traditional Chinese medicine systems pharmacology database and analysis platform,PubChem,Pharm Mapper,Uniprot,Gene Cards,OMIM databases.Combined with the String database and Cytoscape 3.6.1 software,the active component-target network diagram and the protein-protein interaction network for Pulsatilliae Radix tuberculosis treatment were constructed.GO enrichment analysis and KEGG signal pathway enrichment analysis of Pulsatilliae Radix tuberculosis treatment targets were performed by DAVID database and Weishengxin online mapping software.Results Using oral bioavailability and drug-like parameters as criteria,the 9 herb ingredients such as Mairin,Aureusidin,β-sitosterol,isorhamnetin,Stigmasterol, etc,were screened out.It is mainly used to treat tuberculosis by regulating potential targets such as nitric oxide synthase 2,leukotriene A4 hydrolase,peroxisome proliferators activate receptors, etc,these targets may through pathways in cancer and tumor necrosis factor signaling pathway to play to the role of the treatment of pulmonary tuberculosis.Conclusion Therefore,through the network pharmacological research,it was preliminarily predicted that Stigmasterol might be the main active ingredient of Pulsatilliae Radix in the treatment of pulmonary tuberculosis by regulating the cancer signal pathway and tumor necrosis factor signaling pathway,activating the process of apoptosis,participating in the immune response, etc,so as to make Mycobacterium tuberculosis lose living environment,play the role of treating tuberculosis thereby.
|
|
|
|
|
[2] |
王淑英,王晓兰,刘萌萌,等.白头翁提取物体外抗结核杆菌作用的实验研究[J].时珍国医国药,2011,22(12):2965-2966.
|
[3] |
李婷婷,刘欢庆,杜巧盈.中药治疗肺结核的用药规律及作用机制预测[J].中国防痨杂志,2020,42(10):1115-1120.
|
[4] |
王光耀,许光兰,陈小丽,等.基于数据挖掘和网络药理学的古方治疗肺结核的用药规律及机制分析[J].世界科学技术-中医药现代化,2020,22(7):2256-2268.
|
[5] |
戴璐.平滑露兜树中的抗结核三萜类和植物甾醇类成分[J].现代药物与临床,2009,24(2):113.
|
[6] |
姚凤,周清燕,熊瑛,等.β-谷甾醇对脂多糖诱导的小鼠急性肺损伤的保护作用研究[J].中国农学通报,2015,31(2):55-61.
|
[7] |
苏瑾文,刘艳华,杨秉芬,等,重症继发性肺结核患者外周血单个核细胞c-Jun 水平降低[J].细胞与分子免疫学杂志,2015,31(5):677-681.
|
[8] |
Kyriakis JM,Avruch J.Mammalian MAPK signal transduction pathways activated by stress and inflammation:a 10-year update[J].Physiol Rev,2012,92(2):689-737.
|
[9] |
Cargnello M,Roux PP.Activation and function of the MAPKs and their substrates,the MAPK-activated protein kinases[J].Microbiol Mol Biol Rev,2012,76(2):496.
|
[10] |
Dahl JL,Kraus CN,Boshoff HIM,et al.The role of RelMtbmediated adaptation to stationary phase in long-term persistence ofMycobacterium tuberculosisin mice[J].Proc Natl Acad Sci USA,2003,100(17):10 026-10 031.
|
[11] |
耿云峰,杜鸿斌,刘琳琳,等.NF-κB 家族成员RelA 的翻译后修饰及其生理病理作用的研究进展[J].生命科学,2020,32(5):431-438.
|
[12] |
朱逢佳,姚扬伟,徐水凌,等.结核分枝杆菌诱导小鼠树突状细胞凋亡及caspase-3、-8 活化对凋亡的影响[J].浙江大学学报(医学版),2011,40(5):515-521.
|
[13] |
Gudkov AV,Komarova EA.p53 and the carcinogenicity of chronic inflammation[J].Cold Spring Harb Perspect Med,2016,6(11):1-24.
|
[14] |
Choi WH,Chu JP,Jiang MH,et al.Effects of fraction obtained from Korean Corni Fructus extracts causing anti proliferation and p53-dependent apoptosis in A549 lung cancer cells[J].Nutr Cancer,2011,63(1):121-129.
|
[15] |
Wang H,Li WY,Lai BT,et al.A better experimental method to detect the sensitivity of cancer cells to anticancer drugs after adenovirus-mediated introduction of two kinds of p53in vivo[J].Anti-Cancer Drugs,2015,26(8):852-859.
|
[16] |
王媛,白贵斌,王娟,等.p53 信号通路在MTB 感染肺泡Ⅱ型上皮细胞系A549 中的免疫调控作用[J].西北农林科技大学学报(自然科学版),2019,47(8):8-16.
|
[17] |
王媛.p53 和NF-κB 信号通路在MTB 感染AECⅡ细胞中的免疫调控作用[D].银川:宁夏大学,2018.
|
[18] |
Bai X,Feldman NE,Chmura K,et al.Inhibition of nuclear factor κB activation decreases survival ofMycobacterium tuberculosisin human macrophages[J].PLoS One,2013,8(4):e61925.
|
[20] |
麦叶,林瑶瑶,刘海林,等.结核分枝杆菌对miR-21 和TLR-4/NF-κB 信号通路的影响研究[J].重庆医学,2021,50(3):367-371,377.
|
[19] |
Zhang H,Ouyang H,Wang D,et al.Mycobacterium tuberculosisRv2185c contributes to nuclear factor κB activation[J].Mol Immunol,2015,66(2):147-153.
|
[21] |
Li W,Zhao Q,Deng W,et al.Mycobacterium tuberculosisRv3402c enhances mycobacteria survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-Kappa B/ERK/p38 signaling[J].PLoS One,2014,9(11):e94418.
|
[1] |
World Health Organization.Global tuberculosis report 2020[R].Geneva:World Health Organization,2020.
|
[22] |
Barham MS,Whatney WE,Khayumbi J,et al.Activation-Induced Marker Expression IdentifiesMycobacterium tuberculosis-Specific CD4 T Cells in a Cytokine-Independent Manner in HIV-Infected Individuals with Latent Tuberculosis[J].Immunohorizons,2020,4(10):573-584.
|
|
|
|